Deep Learning in Python Master Data Science and Machine Learning with Modern Neural Networks written in Python, Theano, and TensorFlow (Machine Learning in Python)

seeders: 1
leechers: 5
Added on March 16, 2016 by SLCRin Books > Ebooks
Torrent verified.



Deep Learning in Python Master Data Science and Machine Learning with Modern Neural Networks written in Python, Theano, and TensorFlow (Machine Learning in Python) (Size: 1.19 MB)
 Deep Learning in Python - LazyProgrammer.pdf411.6 KB
 Deep Learning in Python - LazyProgrammer.mobi362.46 KB
 Deep Learning in Python - LazyProgrammer.azw3242.12 KB
 Deep Learning in Python - LazyProgrammer.epub199.69 KB

Description



Deep learning is making waves. At the time of this writing (March 2016), Google’s AlghaGo program just beat 9-dan professional Go player Lee Sedol at the game of Go, a Chinese board game.

Experts in the field of Artificial Intelligence thought we were 10 years away from achieving a victory against a top professional Go player, but progress seems to have accelerated!

While deep learning is a complex subject, it is not any more difficult to learn than any other machine learning algorithm. I wrote this book to introduce you to the basics of neural networks. You will get along fine with undergraduate-level math and programming skill.

All the materials in this book can be downloaded and installed for free. We will use the Python programming language, along with the numerical computing library Numpy. I will also show you in the later chapters how to build a deep network using Theano and TensorFlow, which are libraries built specifically for deep learning and can accelerate computation by taking advantage of the GPU.

Unlike other machine learning algorithms, deep learning is particularly powerful because it automatically learns features. That means you don’t need to spend your time trying to come up with and test “kernels” or “interaction effects” - something only statisticians love to do. Instead, we will let the neural network learn these things for us. Each layer of the neural network learns a different abstraction than the previous layers. For example, in image classification, the first layer might learn different strokes, and in the next layer put the strokes together to learn shapes, and in the next layer put the shapes together to form facial features, and in the next layer have a high level representation of faces.

Related Torrents

torrent name size seed leech

Sharing Widget


Download torrent
1.19 MB
seeders:1
leechers:5
Deep Learning in Python Master Data Science and Machine Learning with Modern Neural Networks written in Python, Theano, and TensorFlow (Machine Learning in Python)