Computability, Probability and Logic.pdfseeders: 10
leechers: 3
Computability, Probability and Logic.pdf (Size: 1.29 MB)
Description
Computability, Probability and Logic
Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. Th.L.M. Engelen, volgens besluit van het college van decanen in het openbaar te verdedigen op woensdag 10 juni 2015 om 14:30 uur precies door Rutger Kuyper geboren op 10 februari 1989 te Haarlem Promotoren: Prof. dr. M. Gehrke Universit´e Paris Diderot – Paris 7, Frankrijk Prof. dr. P. Stevenhagen Universiteit Leiden Copromotor: Dr. S.A. Terwijn Manuscriptcommissie: Prof. dr. B.J.J. Moonen Prof. dr. R.G. Downey Victoria University of Wellington, Nieuw-Zeeland Prof. dr. A. Sorbi Universit`a degli Studi di Siena, Itali¨e ========================================================= Contents Acknowledgements ......................................vii Chapter 1. Introduction ................................1 1.1. Computability and logic: the Medvedev and Muchnik lattices page - 2 1.2. Computability and probability: algorithmic randomness and genericity ..............................................5 1.3. Probability and logic: ε-logic .....................6 1.4. Notations and conventions ..........................8 Part I. The Medvedev and Muchnik Lattices............... 11 Chapter 2. The Medvedev and Muchnik Lattices 2.1. Prerequisites...................................... 13 Chapter 3. Natural Factors of the Muchnik Lattice Capturing IPC 3.1. Splitting classes ...................................17 3.2. Low and 1-generic below ∅ 0 are splitting classes ....18 3.3. The theory of a splitting class ....................21 3.4. Further splitting classes ..........................24 Chapter 4. Natural Factors of the Medvedev Lattice Capturing IPC 4.1. Upper implicative semilattice embeddings of P(I) into M 31 4.2. From embeddings of P(ω) to factors capturing IPC 33 4.3. Relativising the construction ........................37 Chapter 5. First-Order Logic in the Medvedev Lattice 5.1. Categorical semantics for IQC........................ 41 5.2. The degrees of ω-mass problems .......................45 5.3. The hyperdoctrine of mass problems................... 47 5.4. Theory of the hyperdoctrine of mass problems......... 51 5.5. Heyting arithmetic in the hyperdoctrine of mass problems ...........................................................55 5.6. Decidable frames .....................................60 Part II. Algorithmic Randomness and Genericity ............69 Chapter 6. Effective Genericity and Differentiability 6.1. Introduction .........................................71 6.2. 1-Genericity .........................................72 6.3. Effective Baire class 1 functions ....................73 6.4. Continuity of Baire class 1 functions ................75 6.5. Functions discontinuous at non-1-generics............ 76 6.6. n-Genericity .........................................79 6.7. Multiply differentiable functions 79 6.8. Complexity-theoretic considerations 80 Chapter 7. Coarse Reducibility and Algorithmic Randomness 7.1. Introduction........................................ 83 7.2. Coarsenings and embeddings of the Turing degrees ....84 7.3. Randomness, K-triviality and robust information coding 89 7.4. Further applications of cone-avoiding compactness ....95 7.5. Minimal pairs in the uniform and non-uniform coarse degrees ...................................................96 7.6. Open questions .......................................98 Part III. ε-Logic .........................................99 Chapter 8. ε-Logic 8.1. ε-Logic 101 8.2. ε-Models 104 Chapter 9. Model Theory of ε-Logic 9.1. A downward L¨owenheim–Skolem theorem 107 9.2. Satisfiability and Lebesgue measure 111 9.3. The L¨owenheim number 115 9.4. Reductions 116 9.5. Compactness 120 Chapter 10. Computational Hardness of Validity in ε-Logic 10.1. Many-one reductions between different ε 129 10.2. Validity is hard 133 Chapter 11. Computational Hardness of Satisfiability in ε-Logic 11.1. Towards an upper bound for ε-satisfiability ........140 11.2. Skolemisation in ε-logic........................... 143 11.3. Satisfiability is Σ11............................. 147 11.4. Decidability of 0-satisfiability ..................151 11.5. Satisfiability is Σ11 -hard .........................154 11.6. Compactness of 0-logic ..............................167 Bibliography ...........................................171 Index ....................................................179 Samenvatting .............................................183 Curriculum Vitae .......................................187 Do not HIT & RUN :::::::Please Seed Always if this torrent is really helpful Thank you! Sharing Widget |
All Comments